Impact of circulation speed on fuel consumption in the Metropolitan District of Quito
DOI:
https://doi.org/10.37431/conectividad.v7i1.369Keywords:
Machine learning, Fuel consumption, Speed optimization, Random Forest, QuitoAbstract
This study investigates the relationship between vehicle speed and fuel consumption in the Metropolitan District of Quito through machine learning techniques using a 2019 Hyundai Accent vehicle with a 1.6L engine as a case study. Data from representative driving cycles obtained via GPS were used, processing 3,020 speed-time records. A Random Forest model was developed that predicts fuel consumption with high accuracy (R² = 0.68), identifying the optimal speed for energy efficiency between 65-75 km/h. The results show that city consumption is significantly higher (11.29 L/100 km) compared to the combined cycle (9.77 L/100 km) and highway cycle (7.52 L/100 km). The optimization model reveals potential fuel savings of 22.3% through speed management strategies.
References
Alazemi, F., Alazmi, A., Alrumaidhi, M., & Molden, N. (2025). Predicting Fuel Consumption and Emissions Using GPS-Based Machine Learning Models for Gasoline and Diesel Vehicles. Sustainability, 17(6), 2395. https://doi.org/10.3390/su17062395 DOI: https://doi.org/10.3390/su17062395
Blanc, F., & Cotella, G. (2023). Global urban development frameworks landing in Latin America: Insights from Ecuador and Bolivia. Development Policy Review, 41(1). https://doi.org/10.1111/dpr.12632 DOI: https://doi.org/10.1111/dpr.12632
Duarte, F., & Ratti, C. (2018). The Impact of Autonomous Vehicles on Cities: A Review. Journal of Urban Technology, 25(4), 3–18. https://doi.org/10.1080/10630732.2018.1493883 DOI: https://doi.org/10.1080/10630732.2018.1493883
Ericsson, E. (2001). Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research Part D: Transport and Environment, 6(5), 325–345. https://doi.org/10.1016/S1361-9209(01)00003-7 DOI: https://doi.org/10.1016/S1361-9209(01)00003-7
Espinoza Cuadrado, J. S., Pantoja Villacís, D., Castro Herrera, C., Sangovalin Chiluisa, J., y Villamarin Molina, J. (2022). Consumo de combustible frente a la eco conducción y tráfico en una ruta mixta en la ciudad de Quito. Revista Científica y Tecnológica UPSE, 9(2), 85–96. https://doi.org/10.26423/rctu.v9i2.708 DOI: https://doi.org/10.26423/rctu.v9i2.708
Gonzalez-Rodriguez, M. S., Clairand, J.-M., Soto-Espinosa, K., Jaramillo-Fuelantala, J., & Escriva-Escriva, G. (2020). Urban Traffic Flow Mapping of an Andean Capital: Quito, Ecuador. IEEE Access, 8, 195459–195471. https://doi.org/10.1109/ACCESS.2020.3033518 DOI: https://doi.org/10.1109/ACCESS.2020.3033518
Hidalgo, D., & Huizenga, C. (2013). Implementation of sustainable urban transport in Latin America. Research in Transportation Economics, 40(1), 66–77. https://doi.org/10.1016/j.retrec.2012.06.034 DOI: https://doi.org/10.1016/j.retrec.2012.06.034
Mangones, S. C., Jaramillo, P., Rojas, N. Y., & Fischbeck, P. (2020). Air pollution emission effects of changes in transport supply: the case of Bogotá, Colombia. Environmental Science and Pollution Research, 27(29), 35971–35978. https://doi.org/10.1007/s11356-020-08481-1 DOI: https://doi.org/10.1007/s11356-020-08481-1
Mirchandani, P., & Head, L. (2001). A real-time traffic signal control system: architecture, algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6), 415–432. https://doi.org/10.1016/S0968-090X(00)00047-4 DOI: https://doi.org/10.1016/S0968-090X(00)00047-4
Montufar, P., Huertas, J. I., & Cuisano, J. (2020). Driving cycle and emission factors in high-altitude cities: Riobamba case. 2020 IEEE ANDESCON, 1–6. https://doi.org/10.1109/ANDESCON50619.2020.9272059 DOI: https://doi.org/10.1109/ANDESCON50619.2020.9272059
Müller, D., Peralta, B., & Nicolis, O. (2024). Graph-Based Neural Networks for Public Transport Speed Prediction in Santiago, Chile. 2024 43rd International Conference of the Chilean Computer Science Society (SCCC), 1–4. https://doi.org/10.1109/SCCC63879.2024.10767616 DOI: https://doi.org/10.1109/SCCC63879.2024.10767616
Pardo Martínez, C. I. (2015). Energy and sustainable development in cities: A case study of Bogotá. Energy, 92, 612–621. https://doi.org/10.1016/j.energy.2015.02.003 DOI: https://doi.org/10.1016/j.energy.2015.02.003
Sajja, S., Pandey, H., Sharma, A., Bhawana, Murty, P., & Rajbongshi, B. (2024). Real-time Traffic and Traffic Flow Prediction using Machine Learning Algorithm for Optimal Route Planning in Electric Vehicles. 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES), 1–7. https://doi.org/10.1109/IC3TES62412.2024.10877654 DOI: https://doi.org/10.1109/IC3TES62412.2024.10877654
Wu, F., Bektaş, T., Dong, M., Ye, H., & Zhang, D. (2021). Optimal driving for vehicle fuel economy under traffic speed uncertainty. Transportation Research Part B: Methodological, 154, 175–206. https://doi.org/10.1016/j.trb.2021.10.010 DOI: https://doi.org/10.1016/j.trb.2021.10.010
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Instituto Superior Tecnológico Universitario Rumiñahui

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The originals published in the electronic edition under the first publication rights of the journal belong to the Instituto Superior Tecnológico Universitario Rumiñahui; therefore, it is necessary to cite the source in any partial or total reproduction. All the contents of the electronic journal are distributed under a Creative Commons Attribution-Noncommercial 4.0 International (CC-BY-NC 4.0) license.

2.png)



