Concrete strength data analysis with Python 3.13.3: Statistical assessment of concrete homogeneity

Authors

DOI:

https://doi.org/10.37431/conectividad.v7i1.350

Keywords:

Concrete strength, Mann-Whitney U test, Variability, Homogeneity

Abstract

Verifying the structural integrity of existing buildings is essential when considering their reuse, such as a retaining wall intended to support a new adjacent structure. This wall, made of reinforced concrete with irregular geometry, was evaluated using a non-destructive method: the rebound hammer test. A total of 48 measurements were taken using a Proceq Silver Schmidt Type N hammer, yielding Q-values above 42, which correspond to an estimated strength greater than 210 kg/cm², in compliance with the Ecuadorian Construction Code (NEC). Measurements were taken in both vertical and horizontal orientations and analyzed statistically. Since the data did not follow a normal distribution, the non-parametric Mann-Whitney U test was applied. The results showed statistically significant differences between the orientations, revealing considerable variability in the concrete's strength. This lack of homogeneity indicates that the wall does not possess the required structural capacity to support additional loads. The study highlights the effectiveness of statistical tools in assessing in-situ concrete quality without destructive testing methods.

References

Akbar, M., Huali, P., Huang, J., Arshid, M. U., Khan, Q. Z., Guoqiang, O., & Ahmed, B. (2024). Seismic response comparison of various geogrid reinforced earth-retaining walls: Based on shaking table and 3D FE analysis. Scientific Reports, 14, 24168. https://doi.org/10.1038/s41598-024-64203-4 DOI: https://doi.org/10.1038/s41598-024-64203-4

ATSM INTERNACIONAL. (2018). ASTM C805/C805M-18: Standard Test Method for Rebound Number of Hardened Concrete. West Conshohocken. (PA: ASTM Internacional) Recuperado el 06 de 05 de 2025, de https://cdn.standards.iteh.ai/samples/102443/2bcd8172f6454cc7995a00d186c4d312/ASTM-C805-C805M-18.pdf

Chicco, D., Sichenze, A., & Jurman, G. (2025). A simple guide to the use of Student’s t-test, Mann-Whitney U test, Chi-squared test, and Kruskal-Wallis test in biostatistics. BioData Mining, 18, 56. https://biodatamining.biomedcentral.com/articles/10.1186/s13040-025-00465-6 DOI: https://doi.org/10.1186/s13040-025-00465-6

Hussain, M., Mahmud, I., & Sheikh, B. (2023). pyHomogeneity: A Python Package for Homogeneity Test of Time Series Data. Journal of Open Research Software, 11(1). https://doi.org/10.5334/jors.427 DOI: https://doi.org/10.5334/jors.427

Işık, E., Avcil, F., Hadzima-Nyarko, M., İzol, R., Büyüksaraç, A., Arkan, E., Özcan, Z. (2024). Seismic performance and failure mechanisms of reinforced concrete structures subject to the earthquakes in Türkiye. Sustainability, 16, 6473. https://doi.org/10.3390/su16156473 DOI: https://doi.org/10.3390/su16156473

Kevadkar, M. D., Hinge, G. A., Bhilare, S. A., & Parvez, K. (2025). New technique for evaluating concrete strength through non-destructive testing. Journal of The Institution of Engineers (India): Series A. https://doi.org/10.1007/s40030-025-00923-8 DOI: https://doi.org/10.1007/s40030-025-00923-8

Kwon, S.-H., Lee, J.-S., & Ji, G.-B. (2025). Consideration on application of nondestructive test to estimate in-situ compressive strength of concrete: A case study. (SpringerOpen, Ed.) International Journal of Concrete Structures and Materials, 19, 1. https://doi.org/10.1186/s40069-024-00752-2 DOI: https://doi.org/10.1186/s40069-024-00752-2

López-Miguel, A., Cabello-Mendez, J. A., Moreno-Valdes, A., Perez-Quiroz, J. T., & & Machorro-Lopez, J. M. (s.f.). Non-destructive testing of concrete materials from piers: Evaluating durability through a case study. NDT, 2(4), 532-548. https://doi.org/10.3390/ndt2040033 DOI: https://doi.org/10.3390/ndt2040033

Miano, A., Ebrahimian, H., Jalayer, F., & Prota, A. (2023). Reliability estimation of the compressive concrete strength based on non-destructive tests. Sustainability, 15(19), 14644. https://doi.org/10.3390/su151914644 DOI: https://doi.org/10.3390/su151914644

NEC. (2014). Estructuras de hormigón armado. Quito.

Norma Ecuatoriana de Construcción. (2016). HORMIGÓN ENDURECIDO. DETERMINACIÓN DEL NÚMERO DE REBOTE. MÉTODO DE ENSAYO. Quito.

Rodrigo, J. A. (2017). Test de Wilcoxon Mann Whitney como alternativa al t-test. Obtenido de https://cienciadedatos.net/documentos/17_mann%E2%80%93whitney_u_test?utm_source=chatgpt.com

Sadowski, Ł. (2022). Non-destructive testing for building evaluation. Buildings, 7, 12. https://doi.org/10.3390/buildings12071030 DOI: https://doi.org/10.3390/buildings12071030

Sadowski, L., & Stefaniuk, D. (2020). On the representativeness of non-destructive test results in concrete structures: Sampling strategies and methodological limitations. Structural Concrete. https://doi.org/10.1002/suco.201900315

Sánchez Cortez, J., & Simbaña Tasiguano, M. (2024). Terremoto del 16 de abril de 2016 en Ecuador: Una visión general de los acontecimientos y lecciones aprendidas. Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres REDER, 8, 83-98. https://doi.org/10.55467/reder.v8i2.159 DOI: https://doi.org/10.55467/reder.v8i2.159

Screening Eagle Technologies. (2020). Silver Schmidt Operating Instructions. Obtenido de https://media.screeningeagle.com/asset/Downloads/SilverSchmidt_Operating%20Instructions_English_high.pdf

Secretaría de Riesgos Ecuador. (2015). Guía práctica de diseño de viviendas de hasta 2 pisos con luces de hasta 5 metros de conformidad con la Norma Ecuatoriana de la Construcción NEC 2015. Quito.

Published

2025-10-30

How to Cite

Juna Pozo, L. P., Tigre Sánchez, M. A., Jara Obregón, L. S., Rodríguez Quinteros, W. D., & Quito Guachamin, R. E. (2025). Concrete strength data analysis with Python 3.13.3: Statistical assessment of concrete homogeneity. CONECTIVIDAD, 7(1), 266–281. https://doi.org/10.37431/conectividad.v7i1.350

Issue

Section

Scientific Articles and Review Articles

Categories