Intelligent detection system of diseases in hydroponic crops using artificial vision

Authors

DOI:

https://doi.org/10.37431/conectividad.v7i1.339

Keywords:

Computer vision, MobileNetV2, Transfer learning, Disease detection, Hydroponic crops

Abstract

This work proposes the development of an intelligent system for early disease detection in hydroponic lettuce crops using computer vision and artificial intelligence (AI). A model based on the MobileNetV2 architecture was implemented, it was trained using transfer learning and executed on a Raspberry Pi 4 to ensure portability and low resource consumption. The training stage was      with a set of 2,180 images classified into four classes (healthy, mildew, powdery mildew, and bacterial spot), using data augmentation and preprocessing techniques tailored to the model. An accuracy of 96.34% was achieved in the validation set and 93.64% in the test set, demonstrating high generalization capabilities. The model was integrated into a prototype that captures images online, performs local inferences, and provides immediate visual physical feedback about the detected disease. This research demonstrates the technical feasibility of applying AI to precision agriculture for hydroponic environments, reducing manual intervention and improving production efficiency, with the potential to scale to smart agricultural solutions.    

References

Ahmed, S., Hasan, M. M., Ahmed, T., Sony, M. R. K., & Kabir, M. H. (2022). Less is more: Lighter and faster deep neural architecture for tomato leaf disease classification. IEEE Access, 10, 68868–68884. https://doi.org/10.1109/ACCESS.2022.3187203 DOI: https://doi.org/10.1109/ACCESS.2022.3187203

Akkem, Y., Biswas, S. K., & Varanasi, A. (2023). Smart farming using artificial intelligence: A review. Engineering Applications of Artificial Intelligence, 120, 105899. https://doi.org/10.1016/J.ENGAPPAI.2023.105899 DOI: https://doi.org/10.1016/j.engappai.2023.105899

Bhandari, N., Agarwal, R., & Bhandari, N. (2024). An insight on artificial intelligence (AI) and Internet of Things (IoT) driven hydroponics farming. E3S Web of Conferences, 556, 01036. https://doi.org/10.1051/e3sconf/202455601036 DOI: https://doi.org/10.1051/e3sconf/202455601036

Chiu, V., Ma, T., Jin, K., Li, Z., Sun, Y., Lee, J., Liu, D., Krouse, E., Chen, Y., & Li, B. (2020). Agriculture-Vision: A large aerial image database for agricultural pattern analysis. En Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 59-60). IEEE. DOI: https://doi.org/10.1109/CVPR42600.2020.00290

Duhan, S., Gulia, P., Gill, N. S., & Narwal, E. (2025). RTR_Lite_MobileNetV2: A lightweight and efficient model for plant disease detection and classification. Current Plant Biology, 42(3), 100459. https://doi.org/10.1016/j.cpb.2025.100459 DOI: https://doi.org/10.1016/j.cpb.2025.100459

Gowtham, V., Guhan, N. S., Balasubramanian, M., & Gangadurai, E. (2024). A smart hydroponic plant disease detection system using CNN. International Journal of Electronics and Communication Engineering, 7(2), 1–14.

Jeyabose, A., Eunice, J., Popescu, D. E., Chowdary, M. K., & Hemanth, J. (2022). Deep learning-based leaf disease detection in crops using images for agricultural applications. Agronomy, 12(10), 2395. https://doi.org/10.3390/agronomy12102395 DOI: https://doi.org/10.3390/agronomy12102395

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016 DOI: https://doi.org/10.1016/j.compag.2018.02.016

Khan, A., & Singh, A. (2024). Comparative analysis of image annotation tools: LabelImg, VGG Annotator, Label Studio, and Roboflow. JETIR Research Journal.

Li, Y., Chen, J., Li, Z., Sun, Q., & Pan, M. (2023). Hydroponic lettuce defective leaves identification based on improved YOLOv5s. Frontiers in Plant Science, 14, 1242337. https://doi.org/10.3389/fpls.2023.1242337 DOI: https://doi.org/10.3389/fpls.2023.1242337

Lu, Y., Zhang, Y., Wang, Y., & Li, X. (2023). Improved MobileNetV2 crop disease identification model for intelligent agriculture. PeerJ Computer Science, 9, e1595. https://doi.org/10.7717/peerj-cs.1595 DOI: https://doi.org/10.7717/peerj-cs.1595

Musa, A., Hamada, M., Aliyu, F. M., & Hassan, M. (2021). An intelligent plant disease detection system for smart hydroponic using convolutional neural network. En Proceedings of the 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC) (pp. 345–351). IEEE. https://doi.org/10.1109/MCSoC51149.2021.00058 DOI: https://doi.org/10.1109/MCSoC51149.2021.00058

Rahman, M. A., Chakraborty, N. R., Sufiun, A., Banshal, S. K., & Tajnin, F. R. (2024). An AIoT-based hydroponic system for crop recommendation and nutrient parameter monitorization. Smart Agricultural Technology, 8, 100472. https://doi.org/10.1016/j.atech.2024.100472 DOI: https://doi.org/10.1016/j.atech.2024.100472

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. En Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4510–4520). IEEE. https://doi.org/10.1109/CVPR.2018.00474 DOI: https://doi.org/10.1109/CVPR.2018.00474

Swarup Sahoo, R., Kumar Tripathy, C., Samantasinghar, U., & Biswal, P. (2022). Implementation of an indoor deep water culture farming system using IoT. En 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC) (pp. 1–5). IEEE. https://doi.org/10.1109/iSSSC56467.2022.10051358 DOI: https://doi.org/10.1109/iSSSC56467.2022.10051358

Ye, M., Ward, P. J., De Plaen, J. J-F. G., & Koks, E. E. (2025). A deep learning pipeline to power infrastructure detection in high-resolution satellite images. Big Earth Data. https://doi.org/10.1080/20964471.2025.2490408 DOI: https://doi.org/10.1080/20964471.2025.2490408

Published

2025-10-30

How to Cite

Pichoasamín Morales, D. F., & Cruz Dávalos, P. J. (2025). Intelligent detection system of diseases in hydroponic crops using artificial vision. CONECTIVIDAD, 7(1), 37–54. https://doi.org/10.37431/conectividad.v7i1.339

Issue

Section

Scientific Articles and Review Articles

Most read articles by the same author(s)