Uso de la inteligencia articial entre profesores de educación básica superior en Ecuador. pp. 30 - 43 /
Volumen 5, número 3 / DOI: https://doi.org/10.37431/conectividad.v5i3.148
Fecha de recepción: 20 / 05 / 2024
Fecha de aceptación: 19 / 06 / 2024
Fecha de publicación: 23 / 07 / 2024
40
Instituto Superior Tecnológico Universitario Rumiñahui
Alam, T. M., Mushtaq, M., Shaukat, K., Hameed, I. A., Sarwar, M. U., & Luo, S. (2021).
A Novel Method for Performance Measurement of Public Educational Institutions
Using Machine Learning Models. APPLIED SCIENCES-BASEL, 11(19). https://doi.
org/10.3390/app11199296
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review
and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. https://
doi.org/10.1037/0033-2909.103.3.411
Amjad, S., Younas, M., Anwar, M., Shaheen, Q., Shiraz, M., & Gani, A. (2022). Data Mining
Techniques to Analyze the Impact of Social Media on Academic Performance of High
School Students. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022.
https://doi.org/10.1155/2022/9299115
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Deci-
sion Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Arango-Serna, M. D., Branch-Bedoya, J. W., & Jiménez-Builes, J. A. (2020). El Ágora U.S.B.,
20(1), 190-209. https://doi.org/10.21500/16578031.4255
Backsch, I., Lachner, A., Hische, C., Loose, F., & Scheiter, K. (2020). Professional knowl-
edge or motivation? Investigating the role of teachers’ expertise on the quality of
technology-enhanced lesson plans. Learning and Instruction, 66, 101300. https://doi.
org/10.1016/j.learninstruc.2019.101300
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of
the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
Bentler, P. M., & Bonett, D. G. (1980). Signicance tests and goodness of t in the anal-
ysis of covariance structures. Psychological Bulletin, 88(3), 588-606. https://doi.
org/10.1037/0033-2909.88.3.588
Bosch, N. (2021). Identifying supportive student factors for mindset interventions: A two-mod-
el machine learning approach. COMPUTERS & EDUCATION, 167. https://doi.or-
g/10.1016/j.compedu.2021.104190
Botella Nicolás, A. M., & Ramos Ramos, P. (2019). Investigación-acción y aprendizaje ba-
sado en proyectos: Una revisión bibliográca. Perles Educativos, 41(163), 109-122.
https://doi.org/10.22201/iisue.24486167e.2019.163.58923
Cabero Almenara, J., & Llorente Cejudo, C. (2020). La adopción de las tecnologías por las
personas mayores: Aportaciones desde el modelo TAM (Technology Acceptance
Model). PUBLICACIONES, 50(1), 141-157. https://doi.org/10.30827/publicaciones.
v50i1.8521
Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. En
Modern Methods for Business Research. Psychology Press.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). L. Erlbaum
Associates.
Creswell, J. W., & Creswell, J. D. (2017). Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of In-