Seguridad ocupacional en producción de combustible alternativo mediante pirólisis de neumáticos reciclados: técnicas
innovadoras. pp. 107 - 121 / Volumen 5, número 3 / DOI: https://doi.org/10.37431/conectividad.v5i3.141
Fecha de recepción: 08 / 04 / 2024
Fecha de aceptación: 10 / 05 / 2024
Fecha de publicación: 23 / 07 / 2024
120
Instituto Superior Tecnológico Universitario Rumiñahui
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He,
C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A.,
Huang, X., & Dumka, U. C. (2017). A review of biomass burning: Emissions and impacts
on air quality, health and climate in China. Science of The Total Environment, 579, 1000-
1034. https://doi.org/10.1016/j.scitotenv.2016.11.025
Chew, K. W., Chia, S. R., Chia, W. Y., Cheah, W. Y., Munawaroh, H. S. H., & Ong, W.-J. (2021).
Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for
environmental sustainability and circular economy. Environmental Pollution, 278, 116836.
https://doi.org/10.1016/j.envpol.2021.116836
Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jou-
hara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal
Science and Engineering Progress, 3, 171-197. https://doi.org/10.1016/j.tsep.2017.06.003
dos Santos, R. G., Rocha, C. L., Felipe, F. L. S., Cezario, F. T., Correia, P. J., & Rezaei-Gomari, S.
(2020). Tire waste management: An overview from chemical compounding to the pyrol-
ysis-derived fuels. Journal of Material Cycles and Waste Management, 22(3), 628-641.
https://doi.org/10.1007/s10163-020-00986-8
Gamboa, A. R., Rocha, A. M. A., dos Santos, L. R., & de Carvalho, J. A. (2020). Tire pyrolysis oil
in Brazil: Potential production and quality of fuel. Renewable and Sustainable Energy Re-
views, 120, 109614. https://doi.org/10.1016/j.rser.2019.109614
He, Z., Li, G., Chen, J., Huang, Y., An, T., & Zhang, C. (2015). Pollution characteristics and health
risk assessment of volatile organic compounds emitted from dierent plastic solid waste
recycling workshops. Environment International, 77, 85-94. https://doi.org/10.1016/j.en-
vint.2015.01.004
Hoang, A. T., Nguyen, T. H., & Nguyen, H. P. (2020). Scrap tire pyrolysis as a potential strategy for
waste management pathway: A review. Energy Sources, Part A: Recovery, Utilization, and
Environmental Eects, 1-18. https://doi.org/10.1080/15567036.2020.1745336
Jayawardhana, Y., Gunatilake, S. R., Mahatantila, K., Ginige, M. P., & Vithanage, M. (2019). Sorp-
tive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous mu-
nicipal solid waste management and remediation of volatile organic compounds. Journal of
Environmental Management, 238, 323-330. https://doi.org/10.1016/j.jenvman.2019.02.097
Jjagwe, J., Olupot, P. W., Menya, E., & Kalibbala, H. M. (2021). Synthesis and Application of
Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Re-
view. Journal of Bioresources and Bioproducts, 6(4), 292-322. https://doi.org/10.1016/j.
jobab.2021.03.003
Ławińska, O., Korombel, A., & Zajemska, M. (2022). Pyrolysis-Based Municipal Solid Waste
Management in Poland—SWOT Analysis. Energies, 15(2), Article 2. https://doi.
org/10.3390/en15020510
Mavukwana, A., & Sempuga, C. (2022). Recent developments in waste tyre pyrolysis and gasica-
tion processes. Chemical Engineering Communications, 209(4), 485-511. https://doi.org/1
0.1080/00986445.2020.1864624
Nasir Uddin, Md., Daud, W. M. A. W., & Abbas, H. F. (2013). Potential hydrogen and non-condens-
able gases production from biomass pyrolysis: Insights into the process variables. Renewable